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Point-counting 101

An example
How many solutions of Y2 = X" —7X® +14X3 —7X +17 J

But what is a solution 7 Where does it live?
Solutions in Z: diophantine equations, undecidable.

Our problem
Count solutions of (X, Y) =0 in a finite field Fpn. J

Naive approach: try all possibilities for (x, y) € IF,ZJ,,.
When p large (hundreds of bits), not the best idea.
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Complexity of point-counting

Parameters of the problem
Equation Y2 = f(X) with f polynomial over F .
Input size: deg f x nlog p.

Question: dependency on n, p and deg f?
Holy grail: polynomial-time algorithm in input size.

Naive approach exponential in all.

Partly polynomial-time approaches

We will see algorithms polynomial either nlog p or in deg f.
No classical algorithm polynomial (yet) in all (quantum by [Kedlaya'05]).
When fixed f and many p's, polynomial on average [Harvey'14].
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Our favorite geometrical object

The case of hyperelliptic curves

Count solutions of Y2 = f(X) with f € F[X] monic squarefree.
Assume deg f = 2g + 1, call g the genus of the curve.
Equation of hyperelliptic curve C, solutions are points on C.

R A
e

[
/P<//\ f &

Pr+Po+@Q+@+R+R=0

Curve of equation Y2 = X® — 2x* — 7X3 + 8X? + 12X

P+Q+R=0
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Point counting Il

Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue
Point counting over [, is computing the local ¢ function of C:

o) =ez (zk: #C(Fqk)s?) b (1- -3((51)— gs)’

Where polynomial A has degree 2g and integer coefficients.
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Point counting Il
Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue
Point counting over [, is computing the local ¢ function of C:

o) =ez (zk: #C(Fqk)%) b (1- -3((51)— gs)’

Where polynomial A has degree 2g and integer coefficients.

Point counting

Input: f € F,[X] defining a hyperelliptic curve Y2 = £(X).
Output: the polynomial A.

Example C: Y2 = X7 —7X° + 14X3 — 7X + 1 defined over Fy3.
The associated A is 12167X% — 198X3 + 1.
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A first application
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Why counting points?

Cryptographic purposes (genus < 2)

Curves provide groups with no known subexponential algorithm for
DLP. Size of group determines security level [Pohlig-Hellman'78].

In other algorithms

Primality proving with proven complexity [Adleman-Huang'01].
Deterministic factorization in F,[X] ? (ongoing [Kayal'06, Poonen’17])

v

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus > 2.
L-functions associated: L(s,C) = >, A,/p® with A, = #C(F,)//p-
Computing them relies on point-counting primitives.
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Algorithms for point counting

Let C be a curve over F, with g = p".

p-adic methods
o elliptic curves: Satoh’99, Mestre'00
@ hyp. curves: Kedlaya’01, Denef-Vercauteren’'06, Lauder-Wan'06
@ more general curves: Castryck-Denef-Vercauteren’06, Tuitman'l7

Asymptotic complexity: polynomial in g and n, exponential in log p.

(-adic methods
Elliptic curves (Schoof'85) extended to Abelian varieties (Pila’90).
Asymptotic complexity: polynomial in log p and n, exponential in g.
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Schoof’s algorithm in genus < 2

[Pila'90] is polynomial but with 23-bit exponent for log g when g = 2.

Asymptotic complexities

Genus Eomplexity Authors
g=1 Q(Iog4 q) | Schoof-Elkies-Atkin (~ 1990)
g=2 O(log® q) | Gaudry-Harley-Schost (2000)

g = 2 with RM | O(log® q) Gaudry-Kohel-Smith (2011)

RM: real multiplication
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Schoof’s algorithm in genus < 2
[Pila'90] is polynomial but with 23-bit exponent for log g when g = 2.

Asymptotic complexities

Genus gomplexity Authors
g=1 O(log* q) | Schoof-Elkies-Atkin (~ 1990)
g=2 O(log® q) | Gaudry-Harley-Schost (2000)

g = 2 with RM | O(log® q) Gaudry-Kohel-Smith (2011)

RM: real multiplication

Practical results

In genus 1, SEA record with p a 16645-bit prime (Sutherland’10).
In genus 2, heavy computations yield 256-bit cryptographic Jacobian.
In genus 2 with RM, can go up to 1024-bit Jacobians.
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Schoof’s algorithm in genus < 2
[Pila'90] is polynomial but with 23-bit exponent for log g when g = 2.

Asymptotic complexities

Genus gomplexity Authors
g=1 O(log* q) | Schoof-Elkies-Atkin (~ 1990)
g=2 O(log® q) | Gaudry-Harley-Schost (2000)

g = 2 with RM | O(log® q) Gaudry-Kohel-Smith (2011)

RM: real multiplication

Practical results

In genus 1, SEA record with p a 16645-bit prime (Sutherland’10).
In genus 2, heavy computations yield 256-bit cryptographic Jacobian.
In genus 2 with RM, can go up to 1024-bit Jacobians.

What about genus 37
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Contributions: Schoof's algorithm in genus 3

Main results

For C a genus-3 hyperelliptic curve with epr|C|t RM, we give a
Las Vegas algorithm to compute A in O(Iog q) bit ops.
Without RM, the algorithm runs in O(log'* q) bit ops.
Experiments: g = 3 and p = 2% —

59, 192-bit RM-Jacobian.

Complexities

Genus
g=1
g =72

g = 2 with RM
g=3

g = 3 with RM

Complexity
O(log" q)

O(log® q)
O(log’ q)
O(log™* q)
O(log® q)

oe)

Authors
Schoof-Elkies-Atkin
Gaudry-Schost
Gaudry-Kohel-Smith
this thesis
this thesis

v
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Contributions: asymptotic complexity in any genus

Asymptotic complexities

Authors (year)

Complexity

Context

Pila (1990)
Huang-lerardi (1998)
Adleman-Huang (2001)
Adleman-Huang (2001)

0 ((log q)8™
O ((log q)&™
O ((log q)®
O ((
0

o(1)

|0g q)o(g |ogg))

Abelian varieties
Plane curves
Abelian varieties

Hyperelliptic curves

this thesis 5 ((Iog q)O(g)) Hyperelliptic curves
this thesis 5g ((log q)®) with explicit RM
v
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A prototype of Schoof’s algorithm

Let C : y? = f(x) be a hyperelliptic curve over F,.
Let J be its Jacobian and g its genus.

@ (Hasse-Weil) bounds on coeffs of A = compute A mod ¢
@ (-torsion J[{] = {D € J|(D =0} ~ (Z/(Z)*
@ action on Frobenius 7 : (x,y) — (x9 y9) on J[{] yields A mod ¢

Algorithm a /a Schoof

For sufficiently many primes ¢
Describe /, the ideal of /-torsion
Compute action of 7 on
Deduce A mod ¢

Recover A by CRT
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A prototype of Schoof’s algorithm

Let C : y? = f(x) be a hyperelliptic curve over F,.
Let J be its Jacobian and g its genus.

© (Hasse-Weil) bounds on coeffs of A = compute A mod ¢
@ (-torsion J[¢] = {D € J|¢D = 0} ~ (Z/(7)*¢
@ action on Frobenius 7 : (x,y) — (x9,y9) on J[{] yields A mod ¢

Algorithm a /a Schoof

For sufficiently many primes ¢
Describe [, the ideal of ¢-torsion
Compute action of 7 on
Deduce A mod /¢

Recover A by CRT
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Real multiplication

Explicit real multiplication
Famous endomorphisms: scalar multiplications and Frobenius 7.
Ask for additional endomorphism 7 with explicit expression.

Then Z[n] < End(J) and we say C has RM by Z[n].
Real multiplication: Z[n] is in a totally real number field.
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Real multiplication

Explicit real multiplication

Famous endomorphisms: scalar multiplications and Frobenius 7.
Ask for additional endomorphism 7 with explicit expression.
Then Z[n] < End(J) and we say C has RM by Z[n].

Real multiplication: Z[n] is in a totally real number field.

v

An RM family (Mestre'91, Tautz-Top-Verberkmoes'91,Kohel-Smith’06)

Family C; : y? = x" — 7x® + 14x®> — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3.

v
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v

An RM family (Mestre'91, Tautz-Top-Verberkmoes'91,Kohel-Smith'06)

Family C; : y? = x" — 7x® + 14x®> — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3.

For P = (x,y) generic point on C, n(P — o0) = P + P_ — 200 with

P, = (—%xi\/ll—(?x2+%6,y>.
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Real multiplication

Explicit real multiplication

Famous endomorphisms: scalar multiplications and Frobenius 7.
Ask for additional endomorphism 7 with explicit expression.
Then Z[n] < End(J) and we say C has RM by Z[n].

Real multiplication: Z[n] is in a totally real number field.

v

An RM family (Mestre'91, Tautz-Top-Verberkmoes'91,Kohel-Smith'06)

Family C; : y? = x" — 7x® + 14x®> — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3.

For P = (x,y) generic point on C, n(P — o0) = P + P_ — 200 with

P, = (—%xi\/ll—(?x2+%6,y>.

Element 7 has minimal polynomial X3 + X2 —2X — 1.

v
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Directions

f-adic methods

Simon Abelard

Point counting

With P. Gaudry and
P.-J. Spaenlehauer,
presented at ANTS
2018.

With P. Gaudry and
P.-J. Spaenlehauer, to
appear in FOCM
journal.

Chapter VII of the
manuscript, to be
submitted.
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A one-slide summary

Contributions

hyperelliptic with RM
g=3 O(log"*q) | O(log®q)
arbitrary g | O,((log q)°®)) | O,(log® q)
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All our results are based on 3 steps:
e modelling (subgroups of) the ¢-torsion by polynomial systems
@ bounding their sizes (number of variables, degrees)
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Keys to each result

Genus 3: use RM to split the torsion = decrease the degrees.
Genus g: different modelling, exploit multihomogeneity.
Genus g with RM: combine both approaches.
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Plan

1 Introduction
2 Genus 3
3 Arbitrary g

4 RM in any genus

f-adic methods
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Counting points on genus-3 hyperelliptic curves

Contents
@ Model the ¢-torsion

e Use RM to split J[/]

@ Model the ‘parts’ of J[{]

Bound size of input systems
@ Solve them with resultants

Practical results
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Modelling the ¢-torsion

To model the ¢-torsion, consider a divisor D = 3% ;(P; — 00).
Compute (D = 3%, {(P; — o) formally.
Then write a system equivalent to /D = 0 in J, and ‘solve’ it.

Simon Abelard Point counting
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Modelling the ¢-torsion
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Compute ¢D = >% , {(P; — o) formally.
Then write a system equivalent to /D = 0 in J, and ‘solve’ it.

Bad news

In genus 3, the ideal J[¢] has degree ¢°.
Complexity bound: square of the degree, i.e. /'? field ops.
= Even ¢ =5 already seems out of reach. ..
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Modelling the ¢-torsion

To model the ¢-torsion, consider a divisor D = 3% ;(P; — 00).
Compute ¢D = >% , {(P; — o) formally.
Then write a system equivalent to /D = 0 in J, and ‘solve’ it.

Bad news

In genus 3, the ideal J[¢] has degree ¢°.
Complexity bound: square of the degree, i.e. /'? field ops.
= Even ¢ =5 already seems out of reach. ..

Wishful thinking

Can we split J[/] into small (7-stable) subspaces?
For curves with explicit RM, it is possible.
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Tuning Schoof's algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by Z[n].

Splitting J[/]

For totally split ¢, decompose ¢ = p1pop3 in Z[n].

Find well-chosen ¢; in p; (i.e. of ‘size’ £1/3).

The action of 7 on all the Ker ¢; uniquely determines A mod /.
Advantage: model Ker¢; instead of J[(], degree O(¢?) vs (°.

Simon Abelard Point counting September 7, 2018 19 /43



Cantor's division polynomials ( Cantor'94)

Problem

We have to compute ¢D or ¢;(D) to write our systems.
The ¢; are ‘close to’ multiplication by ¢1/3 = scalar multiplication ?
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Cantor's division polynomials ( Cantor'94)

Problem

We have to compute ¢D or €;(D) to write our systems.
The ¢; are ‘close to’ multiplication by ¢1/3 = scalar multiplication ?

v

Answer: Cantor's n-division polynomials

For n > g and P = (x,y) a generic point on C, n(P — o) is
described by 2g + 2 univariate polynomials in x.

In genus 1 and 2, it is known that their degrees are in O(n?).
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Cantor's division polynomials ( Cantor'94)

Problem

We have to compute ¢D or €;(D) to write our systems.
The ¢; are ‘close to’ multiplication by ¢1/3 = scalar multiplication ?

v

Answer: Cantor's n-division polynomials

For n > g and P = (x,y) a generic point on C, n(P — o) is
described by 2g + 2 univariate polynomials in x.

In genus 1 and 2, it is known that their degrees are in O(n?).

Quadratic bound (this thesis)

In genus 3, Cantor’s n-division polynomials have degrees in O(n?).
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Counting points on genus-3 hyperelliptic curves

Contents
@ Model the ¢-torsion
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@ Bound size of input systems
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Practical results
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Solving the systems, in theory

Successive elimination by resultants

System modelling kernel: trivariate with degrees bounded by some d.
Compute tri- then bi-variate resultants to put in triangular form.
Final complexity in O(d®) field operations.
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Solving the systems, in theory

Successive elimination by resultants

System modelling kernel: trivariate with degrees bounded by some d.
Compute tri- then bi-variate resultants to put in triangular form.
Final complexity in O(d®) field operations.

Complexities

For ¢ inert, d = O(¢2) and J[(] is computed in O(¢'2) field ops.
For ¢ totally split, d = O(£?/®) and cost decreased to O(¢*) field ops.
(The ¢; amount to multiplication by ¢*/3)

v
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Solving the systems, in theory

Successive elimination by resultants

System modelling kernel: trivariate with degrees bounded by some d.
Compute tri- then bi-variate resultants to put in triangular form.
Final complexity in O(d®) field operations.

Complexities

For ¢ inert, d = O(¢2) and J[(] is computed in O(¢'2) field ops.
For ¢ totally split, d = O(£?/®) and cost decreased to O(¢*) field ops.
(The ¢; amount to multiplication by ¢*/3)

v

Overall complexities of O(log™* q) in general and O(log® g) with RM.
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A practical example

C:y?=x"—7x%+ 14x3 — Tx + 42 over F,, with p = 2%% — 50,

Retrieving modular information

With general (non-RM related) techniques: A modulo 12 = 3 x 4.
Smallest totally-split prime: A modulo ¢ = 13.
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From theory to practice

Timing estimates for resultants

Evaluation/Interpolation: many not-so-small univariate resultants.

14 Cost (NTL) | Cost (FLINT)
13 1,850 days 735 days
29 | 310,000 days | 190,000 days
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From theory to practice

Timing estimates for resultants

Evaluation/Interpolation: many not-so-small univariate resultants.

14 Cost (NTL) | Cost (FLINT)
13 1,850 days 735 days
29 | 310,000 days | 190,000 days

Successful attempt (F4, FGLM in Magma)

mod ¢ #var | degree bounds time memory
2 J— J— R R
4 (inert?) 6 15 1 min negl.
3 (inert) 5 55 14 days | 140 GB
13 = p1pop3 5 52 3x3 days 41 GB
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A practical example
C:y?=x"—T7x°+ 14x3 — Tx + 42 over F,, with p = 2°% — 50.

Retrieving modular information

With general (non-RM related) techniques: A modulo 12 = 3 X 4.
Smallest totally-split prime: ¢ = 13

We deduce A modulo m = 156, still far from sufficient. . .
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A practical example
C:y?=x"—7x°+ 14x3 — Tx + 42 over F, with p = 2% — 59.

Retrieving modular information

With general (non-RM related) techniques: A modulo 12 = 3 X 4.
Smallest totally-split prime: ¢ = 13

We deduce A modulo m = 156, still far from sufficient. . .

Finishing the computation

Action of m on J (not on J[{]), by collision search.
[Matsuo-Chao-Tsujii'02,Gaudry-Schost'04,Galbraith-Ruprai’09].
Main drawback: exponential complexity.

Advantages: memory efficient, massively run in parallel.

And a factor 1563/2 ~ 1950 speed-up via modular info.

In our experiments, it represents 105 CPU-days done in a few hours.
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Summary of hyperelliptic genus-3 case

Complexities

Genus 3 hyperelliptic with RM
Object to model (-torsion J[/] Kere; where £ =]¢;
Equation (D=0 e(D)=0
Degrees O(¢?) O(12/3)
Complexity O ((log 9)**) O((log 9)°)

Simon Abelard Point counting
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Summary of hyperelliptic genus-3 case

Complexities

Genus 3 hyperelliptic with RM
Object to model (-torsion J[{] Ker¢; where ¢ =[] ¢;
Equation (D=0 e(D)=0
Degrees O(¢?) O(12/3)
Complexity O ((log g)**) O((log 9)°)

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM.
Previously: 183-bit by Sutherland (generic group methods).
Both are for particular cases, although RM is less likely.
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Summary of hyperelliptic genus-3 case

Complexities

Genus 3 hyperelliptic with RM
Object to model (-torsion J[{] Ker¢; where ¢ =[] ¢;
Equation (D=0 e(D)=0
Degrees O(¢?) O(12/3)
Complexity O ((log g)**) O((log 9)°)

Experiments

We count points in a 192-bit hyperelliptic Jacobian with RM.
Previously: 183-bit by Sutherland (generic group methods).
Both are for particular cases, although RM is less likely.

— genus-3 point-counting in large characteristic is challenging.
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Perspective on Schoof's algorithm for g < 3

Villard's algorithm for bivariate resultant (ISSAC 2018)

Genus
g=2
g =2RM
g=3
g =3 RM

!sual resultants
O(log® q)
O(log® q)

el eX
— =
o
09

Villard's algorithm
O((log q)*~%+)
O((log q)>~*/+)
O((log q)4=*/*)

O((log q)°=#/())

With w = 2.8

O((log q)"?)
O((log g)**)
O((log 9)'*°)
O((log 9)>®)

Simon Abelard Point counting
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Perspective on Schoof's algorithm for g < 3

Villard's algorithm for bivariate resultant (ISSAC 2018)

Genus
g=2
g =2RM
g=3
g =3 RM

Usual resultants

Villard's algorithm

O((log q)~%/*)

O((log q)°/)
O((log g)**~*/)
O((log q)°~*/(3<))

With w = 2.8

O((log 9)")

Further improvements

Extension of the SEA algorithm using modular polynomials.
Work of Milio and Martindale, in particular in RM case.

Still large objects (both degrees and coefficients).
Ongoing in genus 2, not tomorrow in genus 3.

Simon Abelard Point counting
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Plan

1 Introduction
2 Genus 3
3 Arbitrary g

4 RM in any genus

f-adic methods
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Hyperelliptic point-counting in any genus
VP =™ s

Strategy

o Extend degree bounds for
Cantor's polynomials

o New modelling for J[¢] with
multihomogeneous structure

@ Exploit multihomogeneity
with geometric resolution

Complexity result

therelliptic vi/ith RM
O(log** q) | O(log® q)
O, ((log q)°®) | O,(log® q)

_ﬁ‘- - -
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Outline

Modelling the ¢-torsion

Write /D = 0 with D = P; 4 --- + Py — goo.
Use Cantor's polynomials for ¢(P; — oo0) and add them.

@ extend degree-bounds on Cantor's polynomials to any g
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Cantor’s division polynomials Il

For ¢ > g and P = (x,y) a generic point on C,
Recall that (P — o) is given by Cantor’s polynomials.

Cubic bound for any g (this thesis) J

Cantor's (-division polynomials have degrees in Og(¢3).
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Cantor’s division polynomials Il

For ¢ > g and P = (x,y) a generic point on C,
Recall that (P — o) is given by Cantor’s polynomials.

Cubic bound for any g (this thesis)

Cantor's (-division polynomials have degrees in Og(¢3).

Conjecture: quadratic bound

Cantor proved two of the polynomials had degrees g¢? + O,(1).
Experiments: the degrees of Cantor’'s polynomials are consecutive.
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Outline

Modelling the ¢-torsion

Write (D = 0 with D = P; +--- 4+ P, — goo.
Use Cantor's polynomials for {(P; — co) and add them.

@ need to bound the degrees of Cantor's polynomials
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Modelling the ¢-torsion

Write (D = 0 with D = P; +--- 4+ P, — goo.

Use Cantor's polynomials for {(P; — co) and add them.
@ need to bound the degrees of Cantor's polynomials

@ degrees grow at each composition of ¢(P; — 00) + ((P; — c0)

Simon Abelard Point counting September 7, 2018 32/43



Another look at the /-torsion

Writing /D = 0
Still write D = Py + - - - + P; — goo and compute ¢(P; — 00).
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Another look at the /-torsion

Writing {D = 0

Still write D = Py + - -- + P; — goo and compute £(P; — 00).
Adding the ¢(P; — o) is avoided by different modelling.
But this introduces additional variables.

Our polynomial system

Degrees are bounded by O,(¢3) (Cantor’s polynomials).
About g2 equations in g2 variables = Bézout bound in (&°.
= seems hard to improve previous bound in (log q)°€”). ..
But not all these variables appear with high degrees.
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Modelling the ¢-torsion

Write (D = 0 with D = P; +--- 4+ P, — goo.
Use Cantor's polynomials for {(P; — co) and add them.

@ need to bound the degrees of Cantor's polynomials
@ degrees grow at each composition of ¢(P; — c0) + ¢(P; — o0)

= Different model, more variables but multihomogeneous structure.

v
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Modelling the ¢-torsion
Write (D = 0 with D = P; + --- + Py — goo.
Use Cantor's polynomials for {(P; — co) and add them.
@ need to bound the degrees of Cantor's polynomials
@ degrees grow at each composition of ¢(P; — c0) + ¢(P; — o0)

= Different model, more variables but multihomogeneous structure.

v

Solving the system
Resultants: exponential degree growth.
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Outline

Modelling the ¢-torsion

Write (D = 0 with D = P; + --- + Py — goo.
Use Cantor's polynomials for {(P; — co) and add them.

@ need to bound the degrees of Cantor's polynomials
@ degrees grow at each composition of ¢(P; — c0) + ¢(P; — o0)

= Different model, more variables but multihomogeneous structure.

v

Solving the system

Resultants: exponential degree growth.
Grobner bases: unusable complexity bounds.
Geometric resolution: takes advantage of structure.
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Multihomogeneity and complexity

g variables x;
O(g?) equations
degree Oy (£3) in x;

g variables y;
g% — g variables for ¢
O(g?) equations
degrees in O,4(1)
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Multihomogeneity and complexity

g variables x;
O(g?) equations
degree Oy (£3) in x;

g variables y;
g% — g variables for ¢
O(g?) equations
degrees in O4(1)

Geometric resolution

( Giusti-Lecerf-Salvy'01, Cafure-Matera'06)

Assume fi,--- , f, have degrees < d and
form a reduced regular sequence, and let

d = max; deg(f,...,f;). Thereis an
algorithm computing a geometric resolution
in time polynomial in 9, d, n.
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Multihomogeneity and complexity

g variables x;
O(g?) equations
degree Oy (£3) in x;

g variables y;
g% — g variables for ¢
O(g?) equations
degrees in O4(1)

Geometric resolution
( Giusti-Lecerf-Salvy'01, Cafure-Matera'06)

Assume fi,--- , f, have degrees < d and
form a reduced regular sequence, and let

d = max; deg(f,...,f;). Thereis an
algorithm computing a geometric resolution
in time polynomial in 9, d, n.

With § = O, (£*¢) bounded by multihomogeneous Bézout bound.
Both d = O,(£3) and n = O4(1) are harmless for our complexity

result.
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Overall complexity bound

Overall result

Model the (-torsion with complexity O, ((°(®)).
Recall the largest £ is in O,(log q).

= we compute the local zeta function in O,((log q)°®).
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Overall complexity bound

Overall result

Model the (-torsion with complexity O, ((°(®)).
Recall the largest £ is in O,(log q).

= we compute the local zeta function in O,((log q)°®).

State of the art
hyperelliptic case | plane curves | Abelian var
Adleman-Huang'01 | (log q)°@&*"s8) | (logq)e™ | (log q)&™”
This thesis O, ((Iog q)o(g)) g =
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Plan

1 Introduction
2 Genus 3
3 Arbitrary g

4 RM in any genus

f-adic methods
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Hyperelliptic point-counting with RM in any genus

Contents
o Extend genus-3 case

@ Use multihomogeneous
modelling for Ker ¢;

@ Dependency on g 7

Complexity result

hxperelliptic vi/ith RM
g=3| O(log"q) | O(log°q)
any g | Og((log q)®) | Oy(log” q)

Simon Abelard Point counting



Explicit RM for arbitrary large g

RM families in any genus (Tautz-Top-Verberkmoes'91)

Consider curves with affine model C,,; : Y2 = D,(X) + t.

With t a parameter and D, the n-th Dickson polynomial.

For n = 2g + 1, yields genus-g imaginary hyperelliptic curves.
Explicit expression for 7 is computable in O, (log q) (Kohel-Smith’06)

v
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RM families in any genus (Tautz-Top-Verberkmoes'91)

Consider curves with affine model C,,; : Y2 = D,(X) + t.

With t a parameter and D, the n-th Dickson polynomial.

For n = 2g + 1, yields genus-g imaginary hyperelliptic curves.
Explicit expression for 7 is computable in O, (log q) (Kohel-Smith’06)

v

Genus 3 | Genus g with RM

Split £ P1p2ps b
Degree bounds | in O(¢/3) in O(¢V/#)
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Explicit RM for arbitrary large g

RM families in any genus (Tautz-Top-Verberkmoes'91)

Consider curves with affine model C,,; : Y2 = D,(X) + t.

With t a parameter and D, the n-th Dickson polynomial.

For n = 2g + 1, yields genus-g imaginary hyperelliptic curves.
Explicit expression for 7 is computable in O, (log q) (Kohel-Smith’06)

v

Genus 3 | Genus g with RM

Split ¢ P1P2ps b
Degree bounds | in O(¢*/3) in O(¢'/¢)
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Modelling kernels of endomorphisms

Genus g with RM
Model J[€] (degree ¢2€) Ker e (degree (?)
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Modelling kernels of endomorphisms

Genus g with RM
Model J[€] (degree ¢2€) Ker e (degree (?)
Equations (D=0 e(D)=0

Variables g with degree O, (¢3) g with degree O,(¢%/¢)
O(g?) with degree O,(1) | O(g?) with degree O,(1)
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Modelling kernels of endomorphisms

Genus g with RM
Model J[€] (degree ¢2€) Ker e (degree (?)
Equations (D=0 e(D)=0
Variables g with degree O, (¢3) g with degree O,(¢%/¢)
O(g?) with degree O,(1) | O(g?) with degree O,(1)
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Modelling kernels of endomorphisms

Genus g with RM
Model J[€] (degree ¢2€) Ker e (degree (?)
Equations (D=0 e(D)=0
Variables g with degree O, (¢3) g with degree O,(¢%/¢)
O(g?) with degree O,(1) | O(g?) with degree O,(1)
Complexity O,((log q)°®)) 0, (log® q)

Remark: assuming quadratic degrees for Cantor’s polynomials,
we get a complexity in O, (log® q) similar to the case g = 3.
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Genus g with RM
Model J[€] (degree ¢2€) Ker e (degree (?)
Equations (D=0 e(D)=0
Variables g with degree O, (¢3) g with degree O,(¢%/¢)
O(g?) with degree O,(1) | O(g?) with degree O,(1)
Complexity O,((log q)°®)) 0, (log® q)

Remark: assuming quadratic degrees for Cantor’s polynomials,
we get a complexity in O, (log® q) similar to the case g = 3.

Practical use? Smallest case: g =5 and ¢ = 23.
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Modelling kernels of endomorphisms

Genus g with RM
Model J[€] (degree ¢2€) Ker e (degree (?)
Equations (D=0 e(D)=0
Variables g with degree O, (¢3) g with degree O,(¢%/¢)
O(g?) with degree O,(1) | O(g?) with degree O,(1)
Complexity O,((log q)°®)) 0, (log® q)

Remark: assuming quadratic degrees for Cantor’s polynomials,
we get a complexity in O, (log® q) similar to the case g = 3.

Practical use? Smallest case: g =5 and ¢ = 23.

Warning: even the size of the system is exponential in g.
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Summary of results

Three questions to address:
e modelling (subgroups of) the ¢-torsion by polynomial systems
@ bounding their sizes (number of variables, degrees)
@ solving them (and bounding complexity)

Answers provided
@ quadratic and cubic bounds for Cantor’s polynomials
e multihomogeneous modelling for J[¢] (includes non-genericity)
@ exploiting structure via geometric resolution
@ when possible (RM) model subgroups of J[/]
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Future work

Beyond the hyperelliptic case

Goal: explicit value for the g1, maybe even reach O, ((Iog q)o(g)).
Main obstacle: need analogue of Cantor's polynomials.
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Splitting the torsion without RM

Model kernels of /-isogenies, as in SEA.
Fast evaluation of modular polynomials? (g = 1 in Sutherland’12)
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Future work

Beyond the hyperelliptic case

Goal: explicit value for the g1 maybe even reach O ((Iog q)o(g)).
Main obstacle: need analogue of Cantor's polynomials.

v

Splitting the torsion without RM

Model kernels of /-isogenies, as in SEA.
Fast evaluation of modular polynomials? (g = 1 in Sutherland’12)

Better handling non-genericity?

Elements of J[/] of weight < g and other pathological cases?
Problem: when these elements contain a proper subgroup of J[/].
Can this happen for any curve or any ¢7 In what proportions?
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Thanks for your attention

Credits: ©fuzzberta
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