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/* */ E,C,
/* */ c,r,
/* */ u,l,

e,s,
i=5,

d[5],Q[999 ]={0};main(n ){for
(;i--;e=scanf("%" "d",d+i));for(C =*d;
++i<C ;++Q[ i*i% C],c= i[Q]?
c:i); for(;i --;) for(u =C;u
--;n +=!u*Q [l%C ],e+= Q[(C
+l*l- c*s* s%C) %C]) for(
l=i,s=u,r=4;r;E= i*l+c*u*s,s=(u*l +i*s)
%C,l=E%C+r --[d]);printf ("%d"

"\n",
(e+n*
n)/2

/* cc caramba.c; echo f3 f2 f1 f0 p | ./a.out */ -C);}

CARAMBA
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Point-counting 101

An example
How many solutions of Y 2 = X 7 − 7X 5 + 14X 3 − 7X + 1 ?

But what is a solution ? Where does it live?
Solutions in Z: diophantine equations, undecidable.

Our problem
Count solutions of f (X ,Y ) = 0 in a finite field Fpn .

Naive approach: try all possibilities for (x , y) ∈ F2
pn .

When p large (hundreds of bits), not the best idea.
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Complexity of point-counting

Parameters of the problem
Equation Y 2 = f (X ) with f polynomial over Fpn .
Input size: deg f × n log p.
Question: dependency on n, p and deg f ?
Holy grail: polynomial-time algorithm in input size.

Naive approach exponential in all.

Partly polynomial-time approaches
We will see algorithms polynomial either n log p or in deg f .
No classical algorithm polynomial (yet) in all (quantum by [Kedlaya’05]).
When fixed f and many p’s, polynomial on average [Harvey’14].
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Our favorite geometrical object
The case of hyperelliptic curves
Count solutions of Y 2 = f (X ) with f ∈ Fq[X ] monic squarefree.
Assume deg f = 2g + 1, call g the genus of the curve.
Equation of hyperelliptic curve C, solutions are points on C.

R

P

Q

P + Q + R = 0

P1

P2 Q1

Q2
R1

R2

P1 + P2 + Q1 + Q2 + R1 + R2 = 0
Curve of equation Y 2 = X5 − 2X4 − 7X3 + 8X2 + 12X
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Point counting II
Let C be a hyperelliptic curve of genus g .

Weil conjectures to the rescue
Point counting over Fq is computing the local ζ function of C:

ζ(s) = exp
(∑

k
#C(Fqk )sk

k

)
thm= Λ(s)

(1− s)(1− qs) .

Where polynomial Λ has degree 2g and integer coefficients.

Point counting
Input: f ∈ Fq[X ] defining a hyperelliptic curve Y 2 = f (X ).
Output: the polynomial Λ.

Example C : Y 2 = X 7 − 7X 5 + 14X 3 − 7X + 1 defined over F23.
The associated Λ is 12167X 6 − 198X 3 + 1.
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A first application
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Why counting points?

Cryptographic purposes (genus ≤ 2)
Curves provide groups with no known subexponential algorithm for
DLP. Size of group determines security level [Pohlig-Hellman’78 ].

In other algorithms
Primality proving with proven complexity [Adleman-Huang’01 ].
Deterministic factorization in Fq[X ] ? (ongoing [Kayal’06, Poonen’17 ])

Arithmetic geometry
Conjectures in number theory e.g. Sato-Tate in genus ≥ 2.
L-functions associated: L(s, C) = ∑

p Ap/ps with Ap = #C(Fp)/√p.
Computing them relies on point-counting primitives.
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Algorithms for point counting

Let C be a curve over Fq with q = pn.

p-adic methods
elliptic curves: Satoh’99, Mestre’00
hyp. curves: Kedlaya’01, Denef-Vercauteren’06, Lauder-Wan’06
more general curves: Castryck-Denef-Vercauteren’06, Tuitman’17

Asymptotic complexity: polynomial in g and n, exponential in log p.

`-adic methods
Elliptic curves (Schoof’85) extended to Abelian varieties (Pila’90).
Asymptotic complexity: polynomial in log p and n, exponential in g .
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Schoof’s algorithm in genus ≤ 2
[Pila’90] is polynomial but with 23-bit exponent for log q when g = 2.

Asymptotic complexities
Genus Complexity Authors
g = 1 Õ(log4 q) Schoof-Elkies-Atkin (∼ 1990)
g = 2 Õ(log8 q) Gaudry-Harley-Schost (2000)

g = 2 with RM Õ(log5 q) Gaudry-Kohel-Smith (2011)

RM: real multiplication

Practical results
In genus 1, SEA record with p a 16645-bit prime (Sutherland’10).
In genus 2, heavy computations yield 256-bit cryptographic Jacobian.
In genus 2 with RM, can go up to 1024-bit Jacobians.

What about genus 3?
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Contributions: Schoof’s algorithm in genus 3
Main results
For C a genus-3 hyperelliptic curve with explicit RM, we give a
Las Vegas algorithm to compute Λ in Õ(log6 q) bit ops.
Without RM, the algorithm runs in Õ(log14 q) bit ops.
Experiments: g = 3 and p = 264 − 59, 192-bit RM-Jacobian.

Complexities
Genus Complexity Authors
g = 1 Õ(log4 q) Schoof-Elkies-Atkin
g = 2 Õ(log8 q) Gaudry-Schost

g = 2 with RM Õ(log5 q) Gaudry-Kohel-Smith
g = 3 Õ(log14 q) this thesis

g = 3 with RM Õ(log6 q) this thesis
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Contributions: asymptotic complexity in any genus

Asymptotic complexities
Authors (year) Complexity Context
Pila (1990) O

(
(log q)gO(g)

)
Abelian varieties

Huang-Ierardi (1998) O
(

(log q)gO(1)
)

Plane curves
Adleman-Huang (2001) O

(
(log q)gO(1)

)
Abelian varieties

Adleman-Huang (2001) O
(

(log q)O(g2 log g)
)

Hyperelliptic curves
this thesis Og

(
(log q)O(g)

)
Hyperelliptic curves

this thesis Õg
(
(log q)8) with explicit RM
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A prototype of Schoof’s algorithm

Let C : y 2 = f (x) be a hyperelliptic curve over Fq.
Let J be its Jacobian and g its genus.

1 (Hasse-Weil) bounds on coeffs of Λ ⇒ compute Λ mod `
2 `-torsion J [`] = {D ∈ J |`D = 0} ' (Z/`Z)2g

3 action on Frobenius π : (x , y) 7→ (xq, yq) on J [`] yields Λ mod `

Algorithm a la Schoof
For sufficiently many primes `
Describe I` the ideal of `-torsion
Compute action of π on I`
Deduce Λ mod `

Recover Λ by CRT
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Real multiplication
Explicit real multiplication
Famous endomorphisms: scalar multiplications and Frobenius π.
Ask for additional endomorphism η with explicit expression.
Then Z[η] ↪→ End(J) and we say C has RM by Z[η].
Real multiplication: Z[η] is in a totally real number field.

An RM family (Mestre’91,Tautz-Top-Verberkmoes’91,Kohel-Smith’06)
Family Ct : y 2 = x7 − 7x5 + 14x3 − 7x + t with t ∈ Fq.
−→ hyperelliptic curves of genus 3.
For P = (x , y) generic point on C, η(P −∞) = P+ + P− − 2∞ with

P± =
(
−11

4 x ±
√

105
16 x2 + 16

9 , y
)
.

Element η has minimal polynomial X 3 + X 2 − 2X − 1.
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Directions

Point-counting

Hyperelliptic case

`-adic methods

`-torsion

Systems

g = 3

Arbitrary g
RM

RM

With P. Gaudry and
P.-J. Spaenlehauer,
presented at ANTS
2018.

With P. Gaudry and
P.-J. Spaenlehauer, to
appear in FOCM
journal.

Chapter VII of the
manuscript, to be
submitted.
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A one-slide summary

Contributions
hyperelliptic with RM

g = 3 Õ(log14 q) Õ(log6 q)
arbitrary g Og ((log q)O(g)) Õg (log8 q)

All our results are based on 3 steps:
modelling (subgroups of) the `-torsion by polynomial systems
bounding their sizes (number of variables, degrees)
solving them (and bounding complexity)

Keys to each result
Genus 3: use RM to split the torsion ⇒ decrease the degrees.
Genus g : different modelling, exploit multihomogeneity.
Genus g with RM: combine both approaches.
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All our results are based on 3 steps:
modelling (subgroups of) the `-torsion by polynomial systems
bounding their sizes (number of variables, degrees)
solving them (and bounding complexity)

Keys to each result
Genus 3: use RM to split the torsion ⇒ decrease the degrees.
Genus g : different modelling, exploit multihomogeneity.
Genus g with RM: combine both approaches.

Simon Abelard Point counting September 7, 2018 15 / 43



A one-slide summary

Contributions
hyperelliptic with RM

g = 3 Õ(log14 q) Õ(log6 q)
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Plan

1 Introduction

2 Genus 3

3 Arbitrary g

4 RM in any genus

Point-counting

Hyperelliptic case

`-adic methods

`-torsion

Systems

g = 3

Arbitrary g
RM

RM
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Counting points on genus-3 hyperelliptic curves

Contents
Model the `-torsion

Use RM to split J [`]

Model the ‘parts’ of J [`]

Bound size of input systems

Solve them with resultants

Practical results

Simon Abelard Point counting September 7, 2018 17 / 43



Modelling the `-torsion

To model the `-torsion, consider a divisor D = ∑g
i=1(Pi −∞).

Compute `D = ∑g
i=1 `(Pi −∞) formally.

Then write a system equivalent to `D = 0 in J , and ‘solve’ it.

Bad news
In genus 3, the ideal J [`] has degree `6.
Complexity bound: square of the degree, i.e. `12 field ops.
⇒ Even ` = 5 already seems out of reach. . .

Wishful thinking
Can we split J [`] into small (π-stable) subspaces?
For curves with explicit RM, it is possible.
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Tuning Schoof’s algorithm using RM

Let C be a genus-3 hyperelliptic curve with explicit RM by Z[η].

Splitting J [`]
For totally split `, decompose ` = p1p2p3 in Z[η].
Find well-chosen εi in pi (i.e. of ‘size’ `1/3).
The action of π on all the Ker εi uniquely determines Λ mod `.
Advantage: model Ker εi instead of J [`], degree O(`2) vs `6.
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Cantor’s division polynomials (Cantor’94 )

Problem
We have to compute `D or εi(D) to write our systems.
The εi are ‘close to’ multiplication by `1/3 ⇒ scalar multiplication ?

Answer: Cantor’s n-division polynomials
For n > g and P = (x , y) a generic point on C, n(P −∞) is
described by 2g + 2 univariate polynomials in x .

In genus 1 and 2, it is known that their degrees are in O(n2).

Quadratic bound (this thesis)
In genus 3, Cantor’s n-division polynomials have degrees in O(n2).

Simon Abelard Point counting September 7, 2018 20 / 43



Cantor’s division polynomials (Cantor’94 )

Problem
We have to compute `D or εi(D) to write our systems.
The εi are ‘close to’ multiplication by `1/3 ⇒ scalar multiplication ?

Answer: Cantor’s n-division polynomials
For n > g and P = (x , y) a generic point on C, n(P −∞) is
described by 2g + 2 univariate polynomials in x .

In genus 1 and 2, it is known that their degrees are in O(n2).

Quadratic bound (this thesis)
In genus 3, Cantor’s n-division polynomials have degrees in O(n2).

Simon Abelard Point counting September 7, 2018 20 / 43



Cantor’s division polynomials (Cantor’94 )

Problem
We have to compute `D or εi(D) to write our systems.
The εi are ‘close to’ multiplication by `1/3 ⇒ scalar multiplication ?

Answer: Cantor’s n-division polynomials
For n > g and P = (x , y) a generic point on C, n(P −∞) is
described by 2g + 2 univariate polynomials in x .

In genus 1 and 2, it is known that their degrees are in O(n2).

Quadratic bound (this thesis)
In genus 3, Cantor’s n-division polynomials have degrees in O(n2).

Simon Abelard Point counting September 7, 2018 20 / 43



Counting points on genus-3 hyperelliptic curves

Contents
Model the `-torsion

Use RM to split J [`]

Model the ‘parts’ of J [`]

Bound size of input systems

Solve them with resultants

Practical results

Simon Abelard Point counting September 7, 2018 21 / 43



Counting points on genus-3 hyperelliptic curves

Contents
Model the `-torsion

Use RM to split J [`]

Model the ‘parts’ of J [`]

Bound size of input systems

Solve them with resultants

Practical results

Simon Abelard Point counting September 7, 2018 21 / 43



Solving the systems, in theory

Successive elimination by resultants
System modelling kernel: trivariate with degrees bounded by some d .
Compute tri- then bi-variate resultants to put in triangular form.
Final complexity in Õ(d6) field operations.

Complexities
For ` inert, d = O(`2) and J [`] is computed in Õ(`12) field ops.
For ` totally split, d = O(`2/3) and cost decreased to Õ(`4) field ops.
(The εi amount to multiplication by `1/3)

Overall complexities of Õ(log14 q) in general and Õ(log6 q) with RM.
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(The εi amount to multiplication by `1/3)
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A practical example

C : y 2 = x7 − 7x5 + 14x3 − 7x + 42 over Fp with p = 264 − 59.

Retrieving modular information
With general (non-RM related) techniques: Λ modulo 12 = 3× 4.
Smallest totally-split prime: Λ modulo ` = 13.

Finishing the computation
Try Λ in J (not in J [`]), by collision search.
Inspired by Matsuo-Chao-Tsujii’02,Gaudry-Schost’04,Galbraith-Ruprai’09.
Main drawback: exponential complexity.
Advantages: memory efficient, run massively in parallel.
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From theory to practice
Timing estimates for resultants
Evaluation/Interpolation: many not-so-small univariate resultants.

` Cost (NTL) Cost (FLINT)
13 1,850 days 735 days
29 310,000 days 190,000 days

Successful attempt (F4, FGLM in Magma)
mod `k #var degree bounds time memory
2 — — — —
4 (inert2) 6 15 1 min negl.
3 (inert) 5 55 14 days 140 GB
13 = p1p2p3 5 52 3× 3 days 41 GB
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A practical example
C : y 2 = x7 − 7x5 + 14x3 − 7x + 42 over Fp with p = 264 − 59.

Retrieving modular information
With general (non-RM related) techniques: Λ modulo 12 = 3× 4.
Smallest totally-split prime: ` = 13

We deduce Λ modulo m = 156, still far from sufficient. . .

Finishing the computation
Action of π on J (not on J [`]), by collision search.
[Matsuo-Chao-Tsujii’02,Gaudry-Schost’04,Galbraith-Ruprai’09].
Main drawback: exponential complexity.
Advantages: memory efficient, massively run in parallel.
And a factor 1563/2 ' 1950 speed-up via modular info.
In our experiments, it represents 105 CPU-days done in a few hours.
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Summary of hyperelliptic genus-3 case

Complexities
Genus 3 hyperelliptic with RM

Object to model `-torsion J [`] Ker εi where ` = ∏
εi

Equation `D = 0 εi(D) = 0
Degrees O(`2) O(`2/3)

Complexity Õ ((log q)14) Õ((log q)6)

Experiments
We count points in a 192-bit hyperelliptic Jacobian with RM.
Previously: 183-bit by Sutherland (generic group methods).
Both are for particular cases, although RM is less likely.

−→ genus-3 point-counting in large characteristic is challenging.
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Perspective on Schoof’s algorithm for g ≤ 3

Villard’s algorithm for bivariate resultant (ISSAC 2018)
Genus Usual resultants Villard’s algorithm With ω = 2.8
g = 2 Õ(log8 q) Õ((log q)8−2/ω) Õ((log q)7.3)

g = 2 RM Õ(log5 q) Õ((log q)5−1/ω) Õ((log q)4.6)
g = 3 Õ(log14 q) Õ((log q)14−4/ω) Õ((log q)12.6)

g = 3 RM Õ(log6 q) Õ((log q)6−4/(3ω)) Õ((log q)5.5)

Further improvements
Extension of the SEA algorithm using modular polynomials.
Work of Milio and Martindale, in particular in RM case.
Still large objects (both degrees and coefficients).
Ongoing in genus 2, not tomorrow in genus 3.
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Hyperelliptic point-counting in any genus
Strategy

Extend degree bounds for
Cantor’s polynomials

New modelling for J [`] with
multihomogeneous structure

Exploit multihomogeneity
with geometric resolution

Complexity result
hyperelliptic with RM
Õ(log14 q) Õ(log6 q)

Og ((log q)O(g)) Õη(log8 q)
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Outline

Modelling the `-torsion
Write `D = 0 with D = P1 + · · ·+ Pg − g∞.
Use Cantor’s polynomials for `(Pi −∞) and add them.

extend degree-bounds on Cantor’s polynomials to any g

degrees grow at each composition of `(Pi −∞) + `(Pj −∞)
⇒ Different model, more variables but multihomogeneous structure.

Solving the system
Succesive (univariate) resultants: exponential degree growth.
Gröbner bases: unusable complexity bounds.
Geometric resolution: takes advantage of structure
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Cantor’s division polynomials II

For ` > g and P = (x , y) a generic point on C,
Recall that `(P −∞) is given by Cantor’s polynomials.

Cubic bound for any g (this thesis)
Cantor’s `-division polynomials have degrees in Og (`3).

Conjecture: quadratic bound
Cantor proved two of the polynomials had degrees g`2 + Og (1).
Experiments: the degrees of Cantor’s polynomials are consecutive.
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Another look at the `-torsion

Writing `D = 0
Still write D = P1 + · · ·+ Pg − g∞ and compute `(Pi −∞).

Adding the `(Pi −∞) is avoided by different modelling.
But this introduces additional variables.

Our polynomial system
Degrees are bounded by Og (`3) (Cantor’s polynomials).
About g2 equations in g2 variables ⇒ Bézout bound in `g2 .
⇒ seems hard to improve previous bound in (log q)O(g2). . .
But not all these variables appear with high degrees.
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Multihomogeneity and complexity

g variables xi

degree Og (`3) in xi

O(g2) equations

g variables yi
g2 − g variables for ϕ

O(g2) equations
degrees in Og (1)

Geometric resolution
(Giusti-Lecerf-Salvy’01, Cafure-Matera’06)
Assume f1, · · · , fn have degrees ≤ d and
form a reduced regular sequence, and let
δ = maxi deg〈f1, . . . , fi〉. There is an
algorithm computing a geometric resolution
in time polynomial in δ, d , n.

With δ = Og (`3g ) bounded by multihomogeneous Bézout bound.
Both d = Og (`3) and n = Og (1) are harmless for our complexity
result.
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Overall complexity bound

Overall result
Model the `-torsion with complexity Og (`O(g)).
Recall the largest ` is in Og (log q).
⇒ we compute the local zeta function in Og ((log q)O(g)).

State of the art
hyperelliptic case plane curves Abelian var

Adleman-Huang’01 (log q)O(g2 log g) (log q)gO(1) (log q)gO(1)

This thesis Og
(

(log q)O(g)
)

- -
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Hyperelliptic point-counting with RM in any genus

Contents
Extend genus-3 case

Use multihomogeneous
modelling for Ker εi

Dependency on g ?

Complexity result
hyperelliptic with RM

g = 3 Õ(log14 q) Õ(log6 q)
any g Og ((log q)cg ) Õη(log8 q)
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Explicit RM for arbitrary large g

RM families in any genus (Tautz-Top-Verberkmoes’91)
Consider curves with affine model Cn,t : Y 2 = Dn(X ) + t.
With t a parameter and Dn the n-th Dickson polynomial.
For n = 2g + 1, yields genus-g imaginary hyperelliptic curves.
Explicit expression for η is computable in Õη(log q) (Kohel-Smith’06).

Genus 3 Genus g with RM
Split ` p1p2p3

∏g
i=1 pi

Degree bounds in O(`1/3) in O(`1/g )
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Modelling kernels of endomorphisms

Genus g with RM
Model J [`] (degree `2g) Ker ε (degree `2)

Equations `D = 0 ε(D) = 0
Variables g with degree Og (`3) g with degree Og (`3/g )

O(g2) with degree Og (1) O(g2) with degree Oη(1)
Complexity Og ((log q)O(g)) Õη(log8 q)

Remark: assuming quadratic degrees for Cantor’s polynomials,
we get a complexity in Õη(log6 q) similar to the case g = 3.
Practical use? Smallest case: g = 5 and ` = 23.
Warning: even the size of the system is exponential in g .

Simon Abelard Point counting September 7, 2018 40 / 43



Modelling kernels of endomorphisms

Genus g with RM
Model J [`] (degree `2g) Ker ε (degree `2)

Equations `D = 0 ε(D) = 0

Variables g with degree Og (`3) g with degree Og (`3/g )
O(g2) with degree Og (1) O(g2) with degree Oη(1)

Complexity Og ((log q)O(g)) Õη(log8 q)
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Summary of results

Three questions to address:
modelling (subgroups of) the `-torsion by polynomial systems
bounding their sizes (number of variables, degrees)
solving them (and bounding complexity)

Answers provided
quadratic and cubic bounds for Cantor’s polynomials
multihomogeneous modelling for J [`] (includes non-genericity)
exploiting structure via geometric resolution
when possible (RM) model subgroups of J [`]
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Future work

Beyond the hyperelliptic case
Goal: explicit value for the gO(1), maybe even reach Og

(
(log q)O(g)

)
.

Main obstacle: need analogue of Cantor’s polynomials.

Splitting the torsion without RM
Model kernels of `-isogenies, as in SEA.
Fast evaluation of modular polynomials? (g = 1 in Sutherland’12)

Better handling non-genericity?
Elements of J [`] of weight < g and other pathological cases?
Problem: when these elements contain a proper subgroup of J [`].
Can this happen for any curve or any `? In what proportions?
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Thanks for your attention

Credits: @fuzzberta
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